 Sequencing the human genome was far from the last step in explaining human genetics. Researchers still need to figure out which of the 20,000-plus human genes are active in any one cell at a given moment. Chemical modifications can interfere with the machinery of protein manufacture, shutting genes down directly or making chromosomes hard to unwind. Such chemical interactions constitute a second order of genetics known as epigenetics.
Sequencing the human genome was far from the last step in explaining human genetics. Researchers still need to figure out which of the 20,000-plus human genes are active in any one cell at a given moment. Chemical modifications can interfere with the machinery of protein manufacture, shutting genes down directly or making chromosomes hard to unwind. Such chemical interactions constitute a second order of genetics known as epigenetics.In 1998, Alexander Olek founded Berlin-based Epigenomics to create a rapid and sensitive test for gene methylation, a common DNA modification linked to cancer. The company's forthcoming tests will determine not only whether a patient has a certain cancer but also, in some cases, the severity of the cancer and the likelihood that it will respond to a particular treatment.
Philip Avner, an epigenetics pioneer at the Pasteur Institute in Paris, says that Epigenomics' test is a powerful tool for accurately diagnosing and understanding cancers at their earliest stages. "If we can't prevent cancer, at least we can treat it better," says Avner.
From: Techology Review
Read more about epigenetics: Epigenetics Changes in Cancer Cells